Arithmetic and mental strategies

<u>Counting forwards and backwards</u> Children first meet counting by beginning at one and counting on in ones. Their sense of number is extended by beginning at different numbers and counting forwards and backwards in steps, not only of ones, but also of twos, fives, tens, hundreds, tenths and so on. The image of a number line helps them to appreciate the idea of counting forwards and backwards. They will also learn that, when they add two numbers together, it is generally easier to count on from the larger number rather than the smaller. You will need to review children's 'counting on' strategies, then show them and encourage them to adopt more efficient methods.

Reordering Sometimes a calculation can be more easily worked out by changing the order of the numbers. The way in which children rearrange numbers in a particular calculation will depend on which number facts they can recall or derive quickly. It is important for children to know when numbers can be reordered: e.g. 2 + 5 + 8 = 8 + 2 + 5 or 15 + 8 - 5 = 15 - 5 + 8 or 23 - 9 - 3 = 23 - 3 - 9 and when they can't be reordered: e.g. 8 - 5 + 5 - 8 The strategy of changing the order of numbers applies mainly when the question is written down. It is more difficult to reorder numbers if the question is presented orally

Partitioning: counting on or back It is important for children to know that numbers can be partitioned into, for example, hundreds, tens and ones, so that 326 = 300 + 20 + 6. In this way, numbers are seen as wholes, rather than as a collection of single digits in columns. This way of partitioning numbers can be a useful strategy for adding and subtracting pairs of numbers. Both numbers can be partitioned, although it is often helpful to keep the first number as it is and to partition just the second number.

Partitioning: **bridging through multiples of 10** An important aspect of having an appreciation of number is to know how close a number is to the next or the previous multiple of 10: to recognise, for example, that 47 is 3 away from 50, or that 47 is 7 away from 40. In mental addition or subtraction, it is often useful to count on or back in two steps, bridging a multiple of 10. The empty number line, with multiples of 10 as 'landmarks', is helpful, since children can visualise jumping to them. For example, 6 + 7 is worked out in two jumps, first to 10, then to 13

Partitioning: compensating This strategy is useful for adding and subtracting numbers that are close to a multiple of 10, such as numbers that end in 1 or 2, or 8 or 9. The number to be added or subtracted is rounded to a multiple of 10 plus or minus a small number. For example, adding 9 is carried out by adding 10, then subtracting 1; subtracting 18 is carried out by subtracting 20, then adding 2. A similar strategy works for adding or subtracting decimals that are close to whole numbers. For example: 1.4 + 2.9 = 1.4 + 3 - 0.1 or 2.45 - 1.9 = 2.45 - 2 + 0.1.

Partitioning: using 'near' doubles If children have instant recall of doubles, they can use this information when adding two numbers that are very close to each other. So, knowing that 6 + 6 = 12, they can be encouraged to use this to help them find 7 + 6, rather than use a counting on strategy or bridging through 10.

Partitioning: bridging through 60 to calculate a time interval Time is a universal non-metric measure. A digital clock displaying 9.59 will, in two minutes time, read 10.01 not 9.61. When children use minutes and hours to calculate time intervals, they have to bridge through 60. So to find the time 20 minutes after 8.50am, for example, children might say 8.50am plus 10 minutes takes us to 9.00am, then add another 10 minutes

Eyfs- Mental Maths end of Year expectations

- Subitise numbers up to 5
- To know 1 more/1 less than a number up to 10
- Automatically recall number bonds to 5
- Automatically recall <u>SOME</u> number bonds to 10
- Automatically recall <u>SOME</u> double facts

					-	
Year 1	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Addition and subtraction	 To partition numbers 3, 4, 5, 6 Adding and subtracting 1 within 10 Double numbers to 5 (e.g. 4 + 4) Number bonds to ten (e.g. 2+ 8 and 8+2) 	 Adding and subtracting 2 within 10 Partition numbers 7, 8, 9 	 represent and use number bonds and related subtraction facts within 20 add and subtract one- digit and two-digit numbers to 20, including zero 	• Place value to 50.	 Adding 10 to a number (e.g. 5 + 10 and 10+5) 	• Near doubles (e.g. 3 _ 4 and 4+ 3)
Multiplication and division				<u>Count in multiples of 5</u> up to 60, linking with knowledge of counting in 10s.		Count in multiples of 10, 2 and 5 in order with growing fluency.

				Continue to develop fluency of counting in 2s and 10s. <u>Count in multiples of 2</u> up to 24, linking with even numbers and supporting doubles.	Count in multiples of 10, 2 and 5 in order fluently. Begin to recall multiples of 10
				Count in <u>multiples of 10</u> in order up to 120.	up to 12x10 with growing fluency.
Double and half				Double all numbers to 10, e.g. double 9	
Mental Strategies to use	Counting forwa Then move to 5 Then to 100. Being able to su • reorder numbe • count on or bac • partition small n • partition and co • partition: dou	rds and backwards to 20. 0. Ibitise numbers to 10 I.e k rs when adding, e.g. put th k in ones, twos or tens numbers, e.g. 8 + 3 = 8 + 2 ombine tens and ones ble and adjust, e.g. 5 + 6 =	nowing that 3 + 2 = 5. he larger number first ? + 1 = 5 + 5 + 1		

Example calculations	Possible counting strategy
4 + 5	count on in ones from 4 (or in ones from 5)
8 - 3	count back in ones from 8
10 + 7	count on in ones from 10 (or use place value)
13 + 5	count on in ones from 13
17 – 3	count back in ones from 17
18 – 6	count back in twos

Example calculations	Possible reordering strategy	Present children with groups of three then four numbers that they are to add in their head. Make sure that, in each group of numbers, there are two numbers that have a total of 10. For example:
2+7	7 + 2	8+3+5+2
5+13	13 + 5	Discuss their methods. See if any children chose to add 8 + 2 first and then add on the 5 + 3, or linked the
10 + 2 + 10	10 + 10 + 2	3 + 5 and added $8 + (3 + 5) + 2$.

Example calculations	Possible compensation strategy
6 + 7	is double 6 and add 1 or double 7 and subtract 1

<u>Year 2</u>

|--|

Addition and	Review	 add or subtract a 		
subtraction	number	two-digit number		
(mentally)	hands to 10	to or from a		
(mentany)				
	Keview	multiple of 10, e.g.		
	adding and	50 + 38, 90 - 27		
	subtracting	• Doubles to 10 (e.g.		
	to 10	7+7)		
	 Partition 	 add a groups of 		
	numbers	small numbers		
	11-20	e.g. 2 + 8 + 7		
	 addition 	• Near Doubles (e.g.		
	and	5+6 and 6+5)		
	subtraction	• Bridging tens (e.g.		
	facts for all	8+4)		
	numbers to	Compensating		
	20. e.g. 9 +			
	8 17 - 9			
	drawing on			
	knowledge			
	of inverse			
	oporations			
	 Number banda with 			
	20 deriving			
	Trom			
	number			
	bonds to 10			
	• Use related			
	number			
	bonds for			
	number			
	bonds to			
	100			

Written addition and subtraction	 § add and subtract numbers using objects, pictorial representation mentally, including: § a two-digit number and ones § a two-digit number and tens § two two-digit numbers § adding three one-digit number 	ng concrete ns, and bers			•	•
Multiplication and division			Consolidate counting in multiples of 2, 5 and 10 in order from 0 up to 12x. <u>Recall multiples of 10</u> up to 12x10 fluently, in any order. Count in multiples of 2 and 5 from 0 up to 12x fluently. <u>Recall multiples of 10</u> up to 10 x 12 in any order, including missing numbers and related division facts with growing fluency. <u>Recall multiples of 2</u> up to 2 x 12 fluently, in any order	Recall multiples of 5 up to 5 x 12 fluently, in any order. Recall multiples of 2 up to 2 x 12 in any order, including missing numbers and related division facts with growing fluency.	Count in multiples of 3 to 3 x 12 in order from 0 with growing fluency. Recall multiples of 2 up to 2 x 12 in any order, including missing numbers and related division facts fluently. Recall multiples of 5 up to 5 x 12 in any order, including missing numbers and related division facts	Count in multiples of 3 to 3 x 12 in order from 0 with fluency. Begin to recall multiples of 3 up to 3 x 12 in any order, including missing numbers.

			Recap multiples of 10 up to 10 x 12 fluently. Teaching of times table facts and methods, including arrays.		with growing fluency.	
Fractions				 recognise, find, name and write fractions 1/3, ¼, 2/4, ¾ of a quantity Find 1 2, 1 3, 1 4, 1 5 and 1 10 of numbers Find half of any even number to 40 or multiple of 10 to 100, e.g. halve 80 Find half of any multiple of 10 up to 200, e.g. halve 170 		
Double and half		 Double all numbers to 20 and find the corresponding halves, e.g. double 7, half of 14 Double multiples of 10 to 50, e.g. double 40, and find the corresponding halves Double multiples of 5 to 50 and find the corresponding halves, e.g. double 35, half of 70 				
Mental Strategies to use	 reorder number partition: bridge partition and content use knowledge partition: count partition: count 	ers when adding the through 10 and multiple ombine multiples of tens of pairs making 10 t on in tens and ones to fi t on or back in tens and o	es of 10 when adding and su and ones ind the total nes to find the difference	ubtracting		

- **<u>partition</u>**: add a multiple of 10 and adjust by 1
- **partition**: double and adjust

Example calculations	Possible partitioning and counting strategy	
30 + 47	30 + 40 + 7	
78 – 40	70 + 8 - 40 = 70 - 40 + 8	
17 + 14	10 + 7 + 10 + 4 = 10 + 10 + 7 + 4	
23 + 45	40 + 5 + 20 + 3 = 40 + 20 + 5 + 3	
68 – 32	60 + 8 - 30 - 2 = 60 - 30 + 8 - 2	
55 + 37	55 + 30 + 7 = 85 + 7	

Example calculations	Possible bridging strategy
5 + 8 or 12 - 7	5 + 5 + 3 or 12 - 2 - 5
65 + 7 or 43 - 6	65 + 5 + 2 or 43 - 3 - 3
24 - 19	19 + 1 + 4
49 + 32	49 + 1 + 31
90 – 27	27 + 3 + 60

Partitioning: bridging through multiples of 10

Partitioning: compensating

Example calculations	Possible compensation strategy
34 + 9 34 + 19	34 + 10 - 1 34 + 20 - 1
34 + 29 and so on	34 + 30 – 1 and so on
34 + 11 34 + 21	34 + 10 + 1 34 + 20 + 1
34 + 31 and so on	34 + 30 + 1 and so on
70 – 9	70 - 10 + 1
53 + 12	53 + 10 + 2
53 - 12	53 - 10 - 2
53 + 18	53 + 20 - 2
84 – 18	84 - 20 + 2

Get children to record a two-digit number on an empty number line. For example, 36 + 47 might be seen as counting on from 36 initially in steps of 10:

$$36$$
 46 56 66 76 83

or by first counting on a step of 40 to 76, then bridging through 80 using two steps:

or by reordering the calculation and then counting on from 47, bridging through 80 using two steps:

or by counting on 30 to 77, then using knowledge of number facts to 20 and place value to reach 83 in one step:

Reordering:

5 + 34	34 + 5
5 + 7 + 5	5 + 5 + 7
23 + 54	54 + 23
12 - 7 - 2	12 - 2 - 7
13 + 21 + 13	13 + 13 + 21 (using double 13)

Partitioning: Counting on or back

30 + 47	30 + 40 + 7
78 – 40	70 + 8 - 40 = 70 - 40 + 8
17 + 14	10 + 7 + 10 + 4 = 10 + 10 + 7 + 4
23 + 45	40 + 5 + 20 + 3 = 40 + 20 + 5 + 3
68 – 32	60 + 8 - 30 - 2 = 60 - 30 + 8 - 2
55 + 37	55 + 30 + 7 = 85 + 7

Counting on or counting back:

Year 2	23 + 5	count on in ones from 23		
	23.13	count on money noney	50 - 20	count on in tens then ones from 50
	57 – 3	count back in ones from 57	50 + 38	
	60 + 5	count on in ones from 60 (or use place value)	90 - 27	count back in tens then ones from 90
	80 – 7	count back in ones from 80 (or use knowledge of number facts to 10 and place value)	34 + 65	count on in tens then ones from 34
	27 + 60	count on in tens from 27	87 – 23	count back in tens then ones from 87
	72 – 50	count back in tens from 72	35 + 15	count on in steps of 5 from 35

<u>Year 3</u>

Year 3	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Addition and	• Sums and	 addition doubles for 	•	•	• add near	Adding and
subtraction	differences	multiples of 10 to 100,			doubles,	subtracting
(mentally)	of multiples	e.g. 90 + 90			e.g. 18 +	time amounts
	of 10, e.g.	• Pairs of two-digit			16, 60 + 70	mentally
	50 + 80,	numbers with a			•	using
	120 - 90	total of 100, e.g.				counting on
	Review -	32 + 68, or 32+				and bridging.
	add or	=100				Add and
	subtract a	• Solving Problems,				subtract money.
	two-digit	including missing				
	number to	number problems.				
	or from a					
	multiple of					
	10, e.g. 50					
	+ 38, 97 –					
	20					
	• Add and					
	subtract					
	two-digit					
	numbers					
	e.g. 34 +					
	65, 68 – 35					
	• And a three-					
	digit number					
	and ones					
	• a three-digit					
	number and					
	tens					

	 a three-digit number and 					
	hundreds					
Written addition	 Add and su 	btract numbers with up to			•	•
and subtraction	three digits	s, using formal written				
	methods of	t column addition and				
		lome including missing				
	 solve problement number problement 	oblems				
Multiplication	Consolidate	Introduce and begin to	Recall multiples of 3	Introduce and begin to count	Recognise	Recall multiples
and division	the 2, 5 and 10	count in multiples of 3	from 3 x 0 up to 3 x 12 in	in multiples of 8 and 6 from 0	that doubling	of 8 from 8 x 0
(mental)	times table.	and 4 from 0 to 12	any order, including	to 12 using arrays and	and doubling	up to 8 x 12 in
		using arrays and	missing numbers and	relating to 2, 4 and 3 times	again is	any order,
	Understand	relating to 2 times	related division facts	tables.	equivalent to	including
	how to move	table.	fluently.		multiplying	missing
	one place value				hv 4	numbers and
	and use zero as		Recognise any multiple		-,	related division
	a place holder		of 3 (all multiples of 3			facts fluently
	to multiply and		have a digital root of 3		Fluently	lucto huchtiy.
	divide by 10		6 or 9		<u>count</u> in	Recall multiples
	divide by 10.		0 01 5).		multiples of 8	of 6 from 6 x 0
	Continuo to		Pocall multiples of 4		and 6 in	$t_0 \in x$ 12 in any
	count in		from 4 x 0 up to 4 x 12		and or up to	order including
	count in multiples of 2		in any order including		v12 using	missing
	and 4 to 2 v		mining order, including		XIZ, USING	numbers and
	$\frac{d10}{12}$ in and $\frac{3}{12}$		missing numbers and		nulliples of	numpers and
	12 in order				2, 4 and 3 to	feated division
	from U		with growing fluency.		support	racts with
	fluently.				. .	growing fluency
					Recognise	
	Understand				that even	
	that anything				multiples of 3	
	multiplied by				are also	
	zero is zero.				multiples of	
					6.	

	Understand that multiplied by 1 stays the same.					
Written multiplication		 Two by one digit multiplication Solve problems missing number problems, involving multiplication and division. 				
Fractions				 recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators Find unit fractions and simple non-unit fractions of whole numbers or quantities, e.g. 3 8 of 24 	 add and subtract fractions with the same denominator within one whole 	
Double and half		 Double multiples of 10 to 100, e.g. double 90, and corresponding halves Double multiples of 5 to 100 and find the corresponding halves, e.g. double 85, halve 170 			•	
Mental Strategies to use	 reorder numbers when adding identify pairs totalling 10 or multiples of 10 partition: add tens and ones separately, then recombine 					
	 partition: count on in tens and ones to find the total partition: count on or back in tens and ones to find the difference 					

- partition: add or subtract 10 or 20 and adjust
- partition: double and adjust
- partition: count on or back in minutes and hours, bridging through 60 (analogue times)

50 + 38	count on in tens then ones from 50	73 – 68	count up from 68, counting 2 to 70 then 3 to 73
90 – 27	count back in tens then ones from 90	47 + 58	count on 50 from 47, then 3 to 100, then 5 to 105
34 + 65	count on in tens then ones from 34	124 – 47	count back 40 from 124, then 4 to 80, then 3 to 77
87 - 23	count back in tens then ones from 87	570 + 300	count on in hundreds from 570
35 + 15	count on in steps of 5 from 35	960 - 500	count back in hundreds from 960

Reordering:

		6 + 13 + 4 + 3	6 + 4 + 13 + 3
		17 + 9 - 7	17 - 7 + 9
		28 + 75	75 + 28 (thinking of 28 as 25 + 3)
23 + 45	40 + 5 + 20 + 3 = 40 + 20 + 5 + 3	12 + 17 + 8 + 3	12 + 8 + 17 + 3
68 - 32	60 + 8 - 30 - 2 = 60 - 30 + 8 - 2	25 + 36 + 75	25 + 75 + 36
55 + 37	55 + 30 + 7 = 85 + 7	58 + 47 - 38	58 - 38 + 47
365 - 40	300 + 60 + 5 - 40 = 300 + 60 - 40 + 5	200 + 567	567 + 200

Partitioning: counting on or back

23 + 45	40 + 5 + 20 + 3 = 40 + 20 + 5 + 3
68 - 32	60 + 8 - 30 - 2 = 60 - 30 + 8 - 2
55 + 37	55 + 30 + 7 = 85 + 7
365 - 40	300 + 60 + 5 - 40 = 300 + 60 - 40 + 5

Partitioning: bridging through multiples of 10

49 + 32	49 + 1 + 31
90 - 27	27 + 3 + 60
57 + 34 or 92 - 25	57 + 3 + 31 or 92 - 2 - 20 - 3
84 – 35	35 + 5 + 40 + 4

Partitioning: compensating

53 + 12	53 + 10 + 2
53 - 12	53 - 10 - 2
53 + 18	53 + 20 - 2
84 - 18	84 - 20 + 2
38 + 68	38 + 70 - 2
95 – 78	95 - 80 + 2
58 + 32	58 + 30 + 2
64 - 32	64 - 30 - 2

Partitioning: using 'near' doubles

18 + 16	is double 18 and subtract 2 or double 16 and add 2
60 + 70	is double 60 and add 10 or double 70 and subtract 10
76 + 75	is double 76 and subtract 1 or double 75 and add 1

Partitioning: bridging through 60 to calculate a time interval

Year 3	It is 10.30am. How many minutes to 10.45am?	
	It is 3.45pm. How many minutes to 4.15pm?	

<u>Year 4</u>

Year 4	Autumn		Spring		Summer	
Addition and subtraction mental	Recap skills of year 3 • sums and differences of pairs of multiples of 10, 100 or 1000	 addition doubles of numbers 1 to 100, e.g. 38 + 38, and the corresponding halves what must be added to any three-digit number to make the next multiple of 100, e.g. 521 + " = 600 	 add or subtract a near multiple of 10, e.g. 56 + 29, 86 - 38 add near doubles of two digit numbers, e.g. 38 + 37 add or subtract two-digit or three-digit multiples of 10, e.g. 120 - 40, 140 + 150, 370 - 180 			
Addition and subtraction written		add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate				
Multiplication and division	Recall multiples of 3, 4 and 8 up to x12 in any	Recall multiples of 6 in any order, including missing	Recall multiples of 7 in any	Recall multiples of 3,	Recall multiples of	Recall multiples of all times tables up

	order, including missing numbers and related division facts fluently.	 numbers and related division facts with growing fluency. Recall multiples of 7 in any order, including missing numbers and related division facts with growing fluency. Learn 'tricky' facts using mnemonics e.g. "7 x 7 = 49, one short of 50 all the time." 	order, including missing numbers and related division facts with growing fluency. Fluently count in multiples of 9 in order up to 9 x 12. Understand that multiples of 9 have a digital root of 9 – learn the finger trick.	4, 6, 7, 8 and 9 up to x12 in any order, including missing numbers and related division facts fluently.	 11 in any order, including missing numbers and related division facts fluently (using 10x and adjusting by adding 1 more group). Fluently count in multiples of 12 in order up to 12x12. 	to x12 in any order, including missing numbers and related division facts fluently.
Double and halving		Double any two-digit number and find the corresponding halves, e.g. double 47, half of 94 Double multiples of 10 and 100 and find the corresponding halves, e.g. double 800, double 340, half of 1600, half of 680				
Written multiplication and division		 use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers multiply two-digit and three- digit numbers by a one-digit 		•		

	number usi layout	ng formal written		
Fractions		 add and subtract fractions with the same denominator Find half of any even number to 200 Find unit fractions and simple non-unit fractions of whole numbers or quantities, e.g. 3/8 of 24 	 find the effect of dividing a one- or two- digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths Recall fraction and decimal equivalents for one-half, quarters, tenths and hundredths, e.g. recall the equivalence of 0.3 and 3 10, and 0.03 and 3 100 	
Mental strategies	 count on or back in hundreds, tens and ones partition: add tens and ones separately, then recombine partition: subtract tens and then ones, e.g. subtracting 27 by subtracting 20 then 7 subtract by counting up from the smaller to the larger number • partition: add or subtract a multiple of 10 and adjust, e.g. 56 + 29 = 56 + 30 - 1, or 86 - 38 = 86 - 40 + 2 partition: double and adjust use knowledge of place value and related calculations, e.g. work out 140 + 150 = 290 using 14 + 15 = 29 partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times) 			

73 - 68	count up from 68, counting 2 to 70 then 3 to 73
47 + 58	count on 50 from 47, then 3 to 100, then 5 to 105
124 - 47	count back 40 from 124, then 4 to 80, then 3 to 77
570 + 300	count on in hundreds from 570
960 - 500	count back in hundreds from 960

Reordering

6 + 13 + 4 + 3	6 + 4 + 13 + 3
17 + 9 - 7	17 - 7 + 9
28 + 75	75 + 28 (thinking of 28 as 25 + 3)
12 + 17 + 8 + 3	12 + 8 + 17 + 3
25 + 36 + 75	25 + 75 + 36
58 + 47 - 38	58 - 38 + 47
200 + 567	567 + 200

Partitioning: counting on or back

55 + 37	55 + 30 + 7 = 85 + 7
365 – 40	300 + 60 + 5 - 40 = 300 + 60 - 40 + 5
43 + 28 + 51	40 + 3 + 20 + 8 + 50 + 1 = 40 + 20 + 50 + 3 + 8 + 1

Partitioning: bridging through multiples of 10

57 + 34 or 92 - 25	57 + 3 + 31 or 92 - 2 - 20 - 3
84 - 35	35 + 5 + 40 + 4
607 - 288	288 + 12 + 300 + 7

Partitioning: compensating

38 + 68	38 + 70 - 2
95 – 78	95 - 80 + 2
58 + 32	58 + 30 + 2
64 - 32	64 - 30 - 2
138 + 69	138 + 70 - 1
405 - 399	405 - 400 + 1

76 + 75	is double 76 and subtract 1 or double 75 and add 1
160 + 170	is double 150, then add 10, then add 20 or double 160 and add 10 or double 170 and subtract 10

Partitioning: bridging through 60 to calculate a time interval

I get up 40 minutes after 6.30am. What time is that? What is the time 50 minutes before 1.10pm? It is 4.25pm. How many minutes to 5.05pm?

10:36 10:40 11:00 11:15

<u>Year 5</u>

Year 5	Autumn	Spring	Summer
Addition and subtraction (mental)	 Recap Year 4 what must be added to any four-digit number to make the next multiple of 1000, e.g. 4087 +	 sums and differences of decimals, e.g. 6.5 + 2.7, 7.8 - 1.3 • doubles and halves of decimals, e.g. half of 5.6, double 3.4 what must be added to a decimal with units and tenths to make the next whole number, e.g. 7.2 + ◆ = 8 add or subtract any pairs of decimal fractions each with units and tenths, e.g. 5.7 + 2.5, 6.3 - 4.8 Adding or subtracting decimals from two different place value columns where there are place holders. E.g. 4.02 + 1.6 	
Addition and subtraction	 Add and subtract numbers greater than 4 digits 		
Multiplication and division	 Recall multiples of 12 in any order, including missing numbers and related division facts fluently. Recall multiples of all times tables up to 12x12 in any order, including missing numbers and related division facts with fluency squares to 12 × 12 	 division facts corresponding to tables fractions, e.g. 7 × 9 = 63 so one-ninth of percentage equivalents of one-half, on hundredths • factor pairs to 100 Cube numbers Multiply by 10 and halve to multiply large Double and double again to multiply 	s up to 10 × 10, and the related unit of 63 is 7 and one-seventh of 63 is 9 ne-quarter, three-quarters, tenths and e numbers by 5 tiply large numbers by 4.
		Multiply by 10 and subtract one group	to multiply large numbers by 9.

	 Develop fluency in multiplication using efficient methods and recognising the properties of multiples. For example: Multiply and divide by 10, 100 or 1000 fluently using place value. 	• Recognise large multiples of 3 and 6	using the digital root.
	iowledge of times tables to multiply multiples		
	Multiply 3 numbers efficiently using jottings e.g. 4 x 7 x 9 =		
	Apply knowledge of all times tables in long multiplication.		
Double and halving	 multiply by 5 by multiplying by 10 then halving, e.g. 18 × 5 = 180 ÷ 2 = 90 multiply by 20 by doubling then multiplying by 10, e.g. 53 × 20 = 106 × 10 = 1060 Multiply by 50 by multiplying by 100 and halving Multiply by 25 by multiplying by 100 and halving twice 	 Form equivalent calculations and use doubling and halving, e.g. multiply by 4 by doubling twice, e.g. 16 × 4 = 32 × 2 = 64 multiply by 8 by doubling three times, e.g. 12 × 8 = 24 × 4 = 48 × 2 = 96 • divide by 4 by halving twice, e.g. 104 ÷ 4 = 52 ÷ 2 = 26 divide by 8 by halving three times, e.g. 104 ÷ 8 = 52 ÷ 4 = 26 ÷ 2 = 13 	
Written multiplication and division	multiply numbers up to 4 digits by a one- method, including long multiplication for § multiply and divide numbers mentally o § divide numbers up to 4 digits by a one- method of short division and interpret re	- or two-digit number using a formal written two-digit numbers drawing upon known facts digit number using the formal written emainders appropriately for the context	

	§ multiply and divide whole numbers and	those involving decimals by 10, 100 and	
	1000		
	recognise and use square numbers and	cube numbers, and the notation for squared	
	(2) and cubed (3)		
Fractions and decimals		 add and subtract fractions with the same denote multiples of the same number multiply proper fractions and mixed numbers is and diagrams solve problems involving number up to three descriptions of which require knowing percent , 5 2 , 5 4 and those fractions with a denominat Find fractions of whole numbers or quantities 	minator and denominators that are by whole numbers, supported by materials ecimal places rage and decimal equivalents of 2 1, 4 1, 5 1 for of a multiple of 10 or 25.
		10% of whole numbers or quantities, e.g. 25%	of 20kg, 10% of £80
Mental strategies	• count on or back in hundreds, tens,	ones and tenths	
	• partition: add hundreds, tens or ones separately, then recombine		
	subtract by counting up from the smaller to the larger number		
	• add or subtract a multiple of 10 or 100 and adjust		
	partition: double and adjust		
	 use knowledge of place value and related calculations, e.g. 6.3 – 4.8 using 63 – 48 		
	• partition: count on or back in min	utes and hours, bridging through 60 (analogu	ue and digital times)

3.2 + 0.6	count on in tenths
1.7 + 0.55	count on in tenths and hundredths

Reordering

12 + 17 + 8 + 3	12 + 8 + 17 + 3
25 + 36 + 75	25 + 75 + 36
58 + 47 - 38	58 - 38 + 47
200 + 567	567 + 200
1.7 + 2.8 + 0.3	1.7 + 0.3 + 2.8
3+8+7+6+2	3+7+8+2+6
34 + 27 + 46	34 + 46 + 27
180 + 650	650 + 180 (thinking of 180 as 150 + 30)
1.7 + 2.8 + 0.3	1.7 + 0.3 + 2.8
4.7 + 5.6 - 0.7	4.7 - 0.7 + 5.6 = 4 + 5.6

Partitioning: counting on or back

43 + 28 + 51	40 + 3 + 20 + 8 + 50 + 1 = 40 + 20 + 50 + 3 + 8 + 1
5.6 + 3.7	5.6 + 3 + 0.7 = 8.6 + 0.7
4.7 – 3.5	4.7 – 3 – 0.5
540 + 280	540 + 200 + 80
276 – 153	276 - 100 - 50 - 3

Partitioning: bridging through multiples of 10

607 – 288	288 + 12 + 300 + 7
6070 - 4987	4987 + 13 + 1000 + 70
1.4 + 1.7 or 5.6 - 3.7	1.4 + 0.6 + 1.1 or 5.6 - 0.6 - 3 - 0.1
0.8 + 0.35	0.8 + 0.2 + 0.15
8.3 – 2.8	2.8 + 0.2 + 5.3 or 8.3 - 2.3 - 0.5

Partitioning: compensating

138 + 69	138 + 70 - 1
405 – 399	405 - 400 + 1
21/2 + 13/4	21/2 + 2 - 1/4
5.7 + 3.9	5.7 + 4.0 - 0.1
6.8 - 4.9	6.8 - 5.0 + 0.1

160 + 170	is double 150, then add 10, then add 20 or double 160 and add 10 or double 170 and subtract 10
2.5 + 2.6	is double 2.5 and add 0.1 or double 2.6 and subtract 0.1

Partitioning: bridging through 60 to calculate a time interval

What time will it be 26 minutes after 3.30am?

What was the time 33 minutes before 2.15pm?

It is 4.18pm. How many minutes to 5.00pm? 5.26pm?

It is 08.35. How many minutes is it to 09.15?

It is 11.45. How many hours and minutes is it to 15.20?

A train leaves London for Leeds at 22.33. The journey takes 2 hours 47 minutes. What time does the train arrive?

Year 6	Autumn	Spring	Summer
Mental addition and subtraction	 addition and subtraction facts for multiples of 10 to 1000 and decimal numbers with one decimal place, e.g. 650 + " = 930, " - 1.4 = 2.5 		
	 what must be added to a decimal with units, tenths and hundredths to make the next whole number, e.g. 7.26 + " = 8 		
	 add or subtract pairs of decimals with units, tenths or hundredths, e.g. 0.7 + 3.38 		
	• find doubles of decimals each with units and tenths, e.g. 1.6 + 1.6		
	 add near doubles of decimals, e.g. 2.5 + 2.6 		
	 add or subtract a decimal with units and tenths, that is nearly a whole number, e.g. 4.3 + 2.9, 6.5 – 3.8 		

Written addition and subtraction	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) § add and subtract numbers mentally	
	with increasingly large numbers	
Multiplication and division	Recall multiples of 12 in any order, including missing numbers and related division facts fluently.	Develop fluency in multiplication, using efficient methods and recognising the properties of multiples . For example:
	Recall multiples of all times tables up to 12x12 in any order, including missing numbers and related division facts with fluency	and divide by 10, 100 or 1000 fluently using place value.
	• squares to 12×12	
	• squares to 12×12	
	arge multiples of 5 and 6 using the digital root.	
	knowledge of times tables to multiply multiples	
	Multiply 3 numbers efficiently using jottings e.g. 4 x 7 x 9 =	
	Apply knowledge of all times tables in long multiplication .	
	 division facts corresponding to tables up to 10 × 10, and the related unit fractions, e.g. 7 × 9 = 63 so one-ninth of 63 is 7 and one-seventh of 63 is 9 percentage equivalents of one-half, one-quarter, three-quarters, tenths and hundredths • factor pairs to 100 Cube numbers Multiply by 10 and halve to multiply large numbers by 5. 	

	 by 10 and subtract one group to multiply large by 9. Double and double again to multiply large numbers by 4. 	
Double and halving	Double decimals with units and tenths, e.g. double 7.6, and find the corresponding halves, e.g. half of 15.2 Form equivalent calculations and use doubling and halving, e.g. • divide by 25 by dividing by 100 then multiplying by 4 e.g. $460 \div 25 = 4.6 \times 4 = 18.4 \bullet$ divide by 50 by dividing by 100 then doubling e.g. $270 \div 50 = 2.7 \times 2 = 5.4$	
Written multiplication and division	 multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication § divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context § divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context § perform mental calculations, including with mixed operations and large numbers division facts corresponding to tables up to 10 × 10, and the related unit fractions, e.g. 7 × 9 = 63 so one-ninth of 63 is 7 and one-seventh of 63 is 9 	

	Duraile symbols the ender of exercise success breakets, for	
	Pupils explore the order of operations using brackets; for	
	example, 2 + 1 x 3 = 5 and (2 + 1) x 3 = 9.	
Fractions	Pupils explore the order of operations using brackets; for example, 2 + 1 x 3 = 5 and (2 + 1) x 3 = 9. add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions multiply simple pairs of proper fractions, writing the answer in its simplest form divide proper fractions by whole numbers multiply and divide numbers by 10, 100 and 1000 giving answers up to three decimal places	
	 multiply one-digit numbers with up to two decimal places by whole numbers § use written division methods in cases where the answer has up to two decimal places solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison Recall equivalent fractions, decimals and percentages for hundredths, e.g. 35% is equivalent to 0.35 or 35 100 Find half of decimals with units and tenths, e.g. half of 3.2 Find 10% or multiples of 10%, of whole numbers and quantities, e.g. 30% of 50 ml, 40% of £30, 70% of 200 g Counting in tenths and decimals on counting stick 	

Mental Strategies	 count on or back in hundreds, tens, ones, tenths and hundredths
	• use knowledge of place value and related calculations, e.g. 680 + 430, 6.8 + 4.3, 0.68 + 0.43 can all be worked out
	using the related calculation 68 + 43
	 use knowledge of place value and of doubles of two-digit whole numbers
	partition: double and adjust
	• partition: add or subtract a whole number and adjust, e.g. 4.3 + 2.9 = 4.3 + 3 - 0.1, 6.5 - 3.8 = 6.5 - 4 + 0.2
	• partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times, 12-hour and 24-
	hour clock)

3.2 + 0.6	count on in tenths
1.7 + 0.55	count on in tenths and hundredths

Reordering

12 + 17 + 8 + 3	12 + 8 + 17 + 3
25 + 36 + 75	25 + 75 + 36
58 + 47 - 38	58 - 38 + 47
200 + 567	567 + 200
1.7 + 2.8 + 0.3	1.7 + 0.3 + 2.8
3+8+7+6+2	3+7+8+2+6
34 + 27 + 46	34 + 46 + 27
180 + 650	650 + 180 (thinking of 180 as 150 + 30)
1.7 + 2.8 + 0.3	1.7 + 0.3 + 2.8
4.7 + 5.6 - 0.7	4.7 - 0.7 + 5.6 = 4 + 5.6

Partitioning: counting on or back

43 + 28 + 51	40 + 3 + 20 + 8 + 50 + 1 = 40 + 20 + 50 + 3 + 8 + 1
5.6 + 3.7	5.6 + 3 + 0.7 = 8.6 + 0.7
4.7 – 3.5	4.7 – 3 – 0.5
540 + 280	540 + 200 + 80
276 - 153	276 - 100 - 50 - 3

Partitioning: bridging through multiples of 10

607 - 288	288 + 12 + 300 + 7
6070 - 4987	4987 + 13 + 1000 + 70
1.4 + 1.7 or 5.6 - 3.7	1.4 + 0.6 + 1.1 or 5.6 - 0.6 - 3 - 0.1
0.8 + 0.35	0.8 + 0.2 + 0.15
8.3 – 2.8	2.8 + 0.2 + 5.3 or 8.3 - 2.3 - 0.5

Partitioning: compensating

138 + 69	138 + 70 - 1
405 – 399	405 - 400 + 1
21/2 + 13/4	21/2 + 2 - 1/4
5.7 + 3.9	5.7 + 4.0 - 0.1
6.8 - 4.9	6.8 - 5.0 + 0.1

Partitioning: using 'near' doubles

160 + 170	is double 150, then add 10, then add 20 or double 160 and add 10 or double 170 and subtract 10
2.5 + 2.6	is double 2.5 and add 0.1 or double 2.6 and subtract 0.1

Partitioning: bridging through 60 to calculate a time interval

